visocolor® HF

Carbonate hardness C 20

Test kit for the determination of p and m value and carbonate hardness

Method:

Acid/base titration

Contents of test kit (*refill pack):

sufficient for approx. 200 tests with an average alkalinity of 10 $^{\circ}\text{d}$ or 3.6 mmol/L HCl

10 mL indicator p

10 mL indicator m 100 mL titration solution TL C 20

1 test tube with 5 mL ring mark

- 1 titration syringe 0-20 °d resp. 0-7.2 mmol/L HCl
- 2 plastic dropping tips

Hazard warning:

Information regarding safety can be found on the box' label and in the safety data sheet. You can download the SDS from www.mn-net.com/SDS.

Procedure:

- Rinse test tube several times with the test sample and fill to ring mark.
- Determination of p value (p alkalinity):
 - Add 1 drop of indicator p and mix by shaking. If test sample remains colorless, the p value is 0. If test sample turns red, proceed as follows: Put dropping tip onto the titration syringe, press down the plunger, dip the tip into the titration
- solution TL C 20 and draw up plunger slowly, until the lower rim of the black plunger O-ring agrees with value 0 on the barrel scale. The small air pocket below the plunger tip does not disturb the determination. Addition of the titration solution: We recommend taking the syringe in the left hand and the
- test tube in the right hand (see drawing) and adding titration solution dropwise while smoothly shaking the test tube. As soon as the red color vanished completely, read off p value in °d or mmol/L HCl from the syringe barrel (lower rim of the black plunger O-ring) and write down.
- Determination of m value (m alkalinity):
 - Add to the remaining water sample in the test tube 1 drop of indicator m and mix by shaking. If the water turns red, the m value is identical to the p value. If the water turns blue, determine the m value as follows:
- Continue titrating with the same syringe filling as used for determination of the p value, until the color turns red. Read off the m value in °d or mmol/L HCl from the syringe barrel (lower rim of the black plunger O-ring) and write down. After addition of a further drop titration solution the color should not change. If the 1st syringe filling is not sufficient to reach color change, fill up the syringe once more with solution TL C 20 and titrate to color change as described before. Add the additional used syringe content to the value written down.
- 7. Carbonate hardness:
 - Normally the m value is identical with the carbonate hardness (mmol/L HCl or °d). Attention, do not mix up mmol/L HCl with mmol/L CaO

If this results in a carbonate hardness, which is higher than the total hardness, the result is discarded. In this case the carbonate hardness is equivalent to the total hardness.

°d	°e	°f	mg/L CaO	mg/L CaCO₃	mmol/L H+
1	1.3	1.8	10	18	0.36
2	2.5	3.6	20	36	0.71
3	3.8	5.4	30	54	1.07
4	5.0	7.1	40	71	1.43
5	6.3	8.9	50	89	1.78
6	7.5	10.7	60	107	2.14
7	8.8	12.5	70	125	2.50
8	10.0	14.3	80	143	2.86
9	11.3	16.1	90	161	3.21
10	12.5	17.8	100	178	3.57

This method can be used also for analyzing sea water.

Disposing of the samples:

Information regarding disposal can be found in the safety data sheet. You can download the SDS from www.mn-net.com/SDS.

Remarks:

m > 2p \rightarrow carbonate hardness = m; sample contains ${\rm CO_3}^{2-}$, ${\rm HCO_3}^{-}$

→ carbonate hardness = m; sample contains CO₂ m = 2pp < m < 2p → carbonate hardness = 2 (m - p); sample contains CO₃²⁻, OH⁻

→ carbonate hardness = 0; sample contains OH m = p0 = 0

→ carbonate hardness = m; sample contains CO₂, HCO₃

